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Abstract

Repair is a conservative, post-processing procedure to be used in numerical methods for hyperbolic conservation

laws in order to preserve certain qualitative characteristics of the numerical solution, such as positivity of density and

internal energy, by means of redistribution of conserved quantities such as mass, momentum and total energy among

the cells of the mesh. In this paper we describe the repair paradigm and prove several theorems which form a theoretical

foundation for the repair procedures. We consider two applications of repair and present corresponding numerical

results. The first application deals with improving properties of the remapping (conservative interpolation) stage of

arbitrary Lagrangian–Eulerian (ALE) methods for the gas dynamics equations, in which the solution is conservatively

transferred from one mesh to another. One requirement for remapping is that the interpolated density and internal

energy on the new mesh have to stay positive. Another desirable property is that the remapping procedure should not

create new extrema for the velocity field. For various reasons these properties may not be satisfied, especially for high-

order methods. Repair plays a supplemental role by bringing gas dynamics quantities into physically justified bounds.

Another application of repair is to improve the quality of numerical methods for advection of some scalar tracer field

with prescribed divergence-free velocity field, in which case the advection equation can be written as a conservation law,

and therefore the total amount of tracer is conserved. We show how the repair procedure allows us to reduce oscil-

lations in a numerical solution obtained by a formally high-order method. Repair offers an alternative to more classical

methods of reducing oscillations and maintaining positivity.
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1. Introduction

The repair algorithm introduced in [2] is a post-processing procedure designed to improve the quality of
an efficient accurate numerical remapping method presented there. In this work we analyze repair in greater

detail, present variants of it along with some mathematical justification, and apply it to advection.
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The need for conservative remapping occurs in the context of an Euler solver that has produced density,

velocity, and energy on some grid, and these need to be transferred to another grid so as to conserve mass,

momentum and energy.
Consider first masses. Suppose the initial grid defines cells Ci having masses mi > 0, areas jCij > 0, and

mean densities qi � mi=jCij. Move the vertices a little bit (not the boundaries), producing new cells C0
i . An

incremental remapping algorithm will assign masses m0
i to each cell C0

i so that total mass is conserved. The

algorithm can have two forms. In one, a nonnegative mass matrix (i.e., with nonnegative elements) mij P 0

is constructed that assigns a mass to each of the sub-partition sets Cij � C0
i \ Cj. This is done by extending

the qi to a function qðxÞP 0 defined on the whole domain such that the integral of qðxÞ over each Ci is mi

and then setting mij to be the integral of qðxÞ over Cij. The new masses m0
i are then defined by

m0
i ¼

X
j:jC0

i\Cjj6¼0

mij: ð1Þ

But then it is also true that

mi ¼
X

j:jC0
j\Ci j6¼0

mji: ð2Þ

This form of remapping is developed in detail in [1], in [2] it is called remapping by exact integration.

Another remapping that plays a major role in [2] and [4] has the general form

m0
i ¼ mi þ

X
j

Fij;

where the flux matrix Fij is anti-symmetric. Remapping, whether by exact integration or by the above

general flux form must be consistent, that is if the qi are constant, qi ¼ A for all i, then q0
i ¼ A for all i.

Now, the mass matrix form implies a flux form, since

m0
i ¼ mi þ

X
j

mij � mi ¼ mi þ
X
j

mij �
X
j

mji ¼ mi þ
X
j

ðmij � mjiÞ;

so that in this case Fij ¼ mij � mji.

A flux form will not in general lead to a nonnegative mass matrix, although we can set

mij ¼ fFij; i 6¼ j; Fij > 0g;
mij ¼ f0; i 6¼ j; Fij 6 0g;
mii ¼ mi þ
X
j;Fij<0

Fij:

The problem is that the mii could be negative.

Now suppose that another conserved quantity like momentum has also been remapped from the first

grid to the second. Restrict attention to one dimension. If the momenta are Pi and velocities are ui, then for

the original grid ui � Pi=mi, and on the new grid u0i � P 0
i =m

0
i. Similarly, if total energy Ei and specific internal

energy ei and kinetic energy 1
2
miu2i on the original grid are related by Ei � miðei þ 1

2
u2i Þ, then on the new grid

this becomes E0
i � m0

iðe0i þ 1
2
ðu0iÞ

2Þ. Since E0
i is the remapped variable, e0i is defined by e0i � ðE0

i � 1
2
m0

iðu0iÞ
2Þ=m0

i.
We consider the following questions. First, if the qi satisfy certain bounds, say

qmin
i 6 qi 6 qmax

i ;
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can we adjust the m0
i so that total mass remains conserved and

qmin
i 6 q0

i 6 qmax
i ; ð3Þ

where q0
i � m0

i=jC0
i j. Second, if the ui satisfy certain bounds, say

umin
i 6 ui 6 umax

i ;

can we adjust the P 0
i so that total momentum remains conserved and

umin
i 6 u0i 6 umax

i : ð4Þ

Third, if the internal energies ei satisfy certain bounds, say

emin
i 6 ei 6 emax

i ;

can we adjust the E0
i so that total energy remains conserved and the new internal energies satisfy

emin
i 6 e0i 6 emax

i : ð5Þ

In several dimensions bounds would be applied to each velocity component and the kinetic energy

becomes the sum of the kinetic energies corresponding to each velocity component.
1.1. Main result

The process of adjustment is what is called repair in [2], and we shall show that under reasonable as-

sumptions about the bounds the masses can be repaired so that (3) holds. If a nonnegative mass matrix

exists then momentum also can be repaired so that (4) holds. If these repairs are made first, then if the total

kinetic energy of the new grid is not larger than the total kinetic energy of the old grid the energy Ei can be

adjusted so as to satisfy the lower bounds on internal energy.

The existence of the nonnegative mass matrix is crucial for the theory, but the difficulty we face is that

after repair of masses we just have assigned masses mi and m0
i. The mi might come from a density, but the m0

i

might not, as in [2]. This raises a new question, namely, do there exist masses mij P 0 such that for given

mi > 0 and m0
i > 0

mi ¼
X
j

mji; ð6Þ
m0
i ¼

X
j

mij; ð7Þ
mij ¼ 0 if jC0
i \ Cjj ¼ 0: ð8Þ

This turns out to be a classical problem in constrained optimization for which there are necessary and

sufficient conditions implying the existence of a solution [6].

The repair notion is not restricted to remapping, but it can also be applied to advection schemes, even

those that are not conservative. Repair can be used to impose positivity and reduce oscillations. Since even

the sophisticated and carefully constructed third-order scheme CENOAC (see Section 8, where numerical

examples are given) can lead to negative values, we feel that repair offers an alternative that should be

considered. We might also note that doing repair in more than one dimension on unstructured grids is not

particularly difficult.
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2. Repair of mass

First, choose a bound-determining neighborhood Ni for each cell Ci. For example, this neighborhood
might consist of cell Ci itself and all of its nearest neighbors – in the case of a logically rectangular grid in

2D it will be the 3� 3 patch with center in cell Ci. We will use the notation Ni also for the set of indices of

cells in the neighborhood.

The first assumption about this neighborhood is,

jC0
i \ Cjj 6¼ 0 if and only if j 2 Ni; ð9Þ

that is, the interior of C0
i is completely covered by the bound-determining neighborhood of cell Ci.

If the bound-determining neighborhood is specified then this condition can be considered as a restriction

on the displacements of the vertices of the old cells. In other words, allowable displacements have to be
compatible with the definition of bound-determining neighborhood.

The lower and upper bounds qmin
i , qmax

i , are

qmin
i ¼ min

j2Ni
qj;
qmax
i ¼ max

j2Ni

qj:

The repair process redistributes mass. Its success depends on the following theorem, the proof of which

will be given later.

Theorem 1. Suppose (9) holds and mass is conserved. If there exists a cell C0
a such that m0

a < qmin
a jC0

aj
(m0

a > qmax
a jC0

aj) then there exists a cell C0
b such that m0

b > qmin
b jC0

bj (m0
b < qmax

b jC0
bj).

There are two ways to redistribute mass, locally or globally.

Note that in applying repair we may leave out those cells for which Ci ¼ C0
i.
2.1. Local redistribution

To redistribute mass locally, following [2], we sweep through the cells and check if the new mean density

q0
i is within its range, if so we do nothing. If the new mean value is out of range we attempt to move it to the

extreme value by subtracting or adding mass to nearby cells. Below we give the algorithm for the case when,
for some i, q0

i < qmin
i . The case when q0

i > qmax
i is similar.

If

q0
i < qmin

i ;

then

dm�
i � qmin

i

�
� q0

i

�
jC0

i j

is the mass needed to add to this cell to increase the new value up to its lower bound. Conservation requires

that this needed mass be taken from other cells. Starting with a search neighborhood Si consisting of the

cells C0
j for j in the bound-determining neighborhood Ni, we compute how much mass can safely be taken

from each cell, that is, without violating its local bound. This is

dmj � max ðq0
j

�
� qmin

j ÞjC0
jj; 0

�
;
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and the total available mass in the neighborhood is

dm �
X
j2Si

dmj:

If there is enough available mass in neighboring cells to provide the mass needed for cell C0
i , that is, if

dm�
i 6 dm;

then the mass and corresponding density in cells C0
i are increased up to their lower bounds. That is, we set

m̂i ¼ qmin
i jC0

i j; q̂i ¼ qmin
i :

All other cell masses in the neighborhood are decreased proportionally to the mass available in the cell,

that is,

m̂j ¼ m0
j �

dmj

dm
dm�

i ;

for j 6¼ i and j 2 Ni, and clearly the total mass of cell C0
i and its neighbors remains unchanged.

A modified version of this is to set

s ¼ min
dm�

i

dm
; 1

� �
;

q̂j ¼ 1ð � sÞq0
j þ sqmin

j ;

and

m̂i ¼ m0
i þminðdm�

i ; dmÞ;
q̂i ¼ m̂i=jC0

ij:

In either case if dm�
i > dm, that is, not enough mass is available in the search neighborhood to provide

the needed mass, then the neighborhood is extended and the process is repeated.

Theorem 1 guarantees that this process will terminate successfully. Indeed, it follows from Theorem 1
that (in this case)

dMþ ¼
X

i:q0i>qmin
i

ðq0
i � qmin

i ÞjC0
i jP dM� ¼

X
i:q0i<qmin

i

ðqmin
i � q0

iÞjC0
ij > 0:

For otherwise, if dMþ < dM�, since dMþ exhausts all cells that could possibly contribute mass, there would
be at least one cell covered in dM� that contradicts the theorem. Thus, there is enough mass to repair all cells.

This local procedure does not lend itself readily to parallelization.
2.2. Global redistribution

There are several forms of global redistribution. In all of them we first set each cell C0
i whose density is

out of bound to its extremum. Thus, for each i set

q̂i ¼ maxðqmin
i ;minðq0

i; q
max
i ÞÞ;

m̂i ¼ q̂ijC0
i j
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and

M̂ ¼
X
i

m̂i:

Next, let

Dþ ¼
X
i

q̂i

�
� qmin

i

�
jC0

i j;

D� ¼
X
i

qmax
i

�
� q̂i

�
jC0

i j:

Let the original total mass be M and

d ¼ M̂ �M :

We now redefine the new cell masses m0
i. If d ¼ 0 then set m0

i ¼ m̂i. If d > 0 we have to subtract mass from

those cells that are above their lower bound, and if d < 0 we have to add mass to those cells below their

upper bound. That is, in the case d > 0 Theorem 1 guarantees that Dþ > 0 and therefore we can set for each i

m0
i ¼ m̂i � ðm̂i � qmin

i jC0
ijÞ

d
Dþ ;

without violating the lower bound, while in the case d < 0, by the same argument given in the previous

section, Theorem 1 guarantees that D� > 0 and we can set for each i

m0
i ¼ m̂i � ðqmax

i jC0
i j � m̂iÞ

d
D� :

ThenX
i

m0
i ¼ M

and all bounds are satisfied.
One problem with this is that there may be unnecessarily large changes in some masses. One alternative is

to try to distribute d uniformly. Thus, in the case d > 0 let N be the number of cells for which

ðm̂i � qmin
i jC0

i jÞ > 0; ð10Þ

and for each of those cells let m0
i ¼ m̂i � d=N . If no cell drops below its lower bound as a result then these m0

i

are optimal in the sense of being the minimizer of the function maxiðm̂i � xiÞ where the maximum is taken

over all i satisfying (10) and the constraints are xi P 0, m̂i � xi P 0, and
P

ðm̂i � xiÞ ¼ d. If some cell drops

below its lower bound we can just repeat the process starting at (10). This must terminate, although no

longer necessarily with the optimal deviation.
Both of these procedures are easily parallelized.
3. Repair of velocity

The repair method can be applied to any conserved quantity, for example, momentum P . However, we

might not be interested in bounds for momentum but rather bounds for velocity, defined as u ¼ P=m (this is

for just one component). The velocity bounds umin
i , umax

i are
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umin
i ¼ min

j2Ni
uj;
umax
i ¼ max

j2Ni

uj:

Velocity repair proceeds exactly as mass repair, except replacing density everywhere by velocity, mass by

momentum, and then area by mass. The following gives conditions for the validity of this process.

Theorem 2. Suppose mass and momentum are conserved and suppose that there exist mij P 0 such that (6) and

(7) hold and

if j 62 Ni then either mij ¼ 0 or umin
i 6 uj 6 umax

i : ð11Þ

Then if there exists a cell C0
a such that u0a < umin

a (u0a > umax
a ) then there exists a cell C0

b such that u0b > umin
b

(u0b < umax
b ).

Note that the condition on mij is weaker than requiring (8).

This applies to any conserved quantity Ai with density Ai=mi.
4. Repair of internal energy

If (total) energy is remapped, internal energy has to be obtained by subtracting the kinetic energy from

the energy, and this can lead to negative internal energies. However, if the remapping is dissipative in the

sense that the total kinetic energy computed from the remapped and repaired densities and velocities is not

greater than the initial total kinetic energy, then repair can be applied to satisfy lower bounds on internal

energy without violating energy conservation. This follows from

Theorem 3. Suppose total energy is conserved, total kinetic energy has decreased, and suppose that there exist

mij P 0 such that (6) and (7) hold and

if j 62 Ni then either mij ¼ 0 or emin
i 6 ej: ð12Þ

Then if there exists a cell C0
a such that e0a < emin

a then there exists a cell C0
b such that e0b > emin

b .
5. Proofs

Consider first Theorem 1. We want to show that not all new densities can be out of bound. Suppose for

all i that q0
i 6 qmin

i , but for some i q0
i < qmin

i . ThenX
j

m0
j ¼

X
j

X
i

jCjijq0
j <

X
j

X
i

jCjijqmin
j :

By (9),X
j

m0
j <

X
j

X
i

jCjijqj ¼
X
i

qi

X
j

jCjij ¼
X
i

mi;

which contradicts mass conservation. So if one new density is less than its lower bound then there must be

one that is greater, as claimed.
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Consider next Theorem 2. We want to show that not all new velocities can be out of bound. Suppose for

all i that u0i 6 umin
i , but for some i u0i < umin

i . ThenX
j

P 0
j ¼

X
j

m0
ju

0
j <

X
j

m0
ju

min
j :

By (6), (7) and (11),

X
j

P 0
j <

X
j

X
i

mjiumin
j 6

X
j

X
i

mjiui ¼
X
i

ui
X
j

mji ¼
X
i

uimi ¼
X
i

Pi;

which contradicts momentum conservation. So if one new velocity is less than its lower bound then there

must be one that is greater, as claimed.
For Theorem 3, let K ¼

P
i
1
2
miu2i , K

0 ¼
P

i
1
2
m0

iðu0Þ
2

i . Then if e0i 6 emin
i for all i,

X
j

E0
j ¼

X
j

m0
je

0
j þ K 0

6

X
j

X
i

mjiemin
j þ K 0:

By (12)

X
j

E0
j 6

X
j

X
i

mjiei þ K 0 ¼
X
i

miei þ K 0 ¼
X
i

Ei � K þ K 0:

Therefore, since total energy is conserved, K 6K 0, contradicting the hypothesis.
6. Existence of a mass matrix

When does the mass matrix mij P 0 that satisfies (6)–(8) exist? It certainly does if the new and old masses

are the result of exact integration of a common nonnegative density function, but that may not be the case.

If it does exist then the following is an obvious necessary condition: if

Ci1 [ � � �Cik � C0
j1
[ � � �C0

jl
;

then X
n¼1;k

min 6

X
n¼1;l

m0
jn

and if

C0
i1
[ � � �C0

ik
� Cj1 [ � � �Cjl ;

then X
n¼1;k

m0
in
6

X
n¼1;l

mjn :

Is this a sufficient condition?
Given this condition the mij can easily be constructed in one dimension. This is not so in two dimensions,

but there is an existence theorem.

Once the masses m;m0 are given, this question becomes strictly combinatorial. Namely, we are asking if

there is a M � N matrix A ¼ fmijg with nonnegative entries having prescribed positive row sums m0
i and
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positive column sums mi and prescribed zero entries. This is answered in [6, Theorem 2]. Following that

paper, let supp(A)¼fi; j : mij 6¼ 0g. For any index set I ¼ ði1; . . . ; ikÞ let Ic be the complementary index set.

Let AIJ be the submatrix fmij : i 2 I ; j 2 Jg. One necessary and sufficient condition for the existence of
mij > 0, ði; jÞ 2 suppðAÞ, is that

X
i2I

mi P
X
j2J

m0
j;

if AIcJ ¼ 0, and equality holds if and only if also AIJ c ¼ 0. Note that since

X
i

mi ¼
X
j

m0
j;

then

X
j2J c

m0
i P

X
i2Ic

mi:

Unfortunately, this result is only of theoretical interest, as these conditions cannot be readily verified in
general.
7. An illustrative example

We give a simple example to show the effect of repair for density, velocity and internal energy. The

calculation is done as follows. First the conserved quantities mass, momentum and total energy are re-

mapped. Then density is repaired. Now velocity is defined as the ratio of the remapped momentum to the
repaired mass, and then repaired. The kinetic energy is then computed from the repaired density and re-

paired velocity in order to extract internal energy from the remapped total energy, and then the internal

energy is repaired.

We have an initial grid in one dimension of four equal intervals with vertices (x1 ¼ 0, x2 ¼ 0:25, x3 ¼ 0:5,
x4 ¼ 0:75, x5 ¼ 1). The new grid vertices are (x1 ¼ 0, x2 ¼ 0:23, x3 ¼ 0:55, x4 ¼ 0:75, x5 ¼ 1). The initial grid

data are

q1 ¼ 20; q2 ¼ 20; q3 ¼ 1; q4 ¼ 1;
m1 ¼ 5; m2 ¼ 5; m3 ¼ 0:25; m4 ¼ 0:25;
u1 ¼ 1; u2 ¼ 1; u3 ¼ �1; u4 ¼ �1;
e1 ¼ 16; e2 ¼ 16; e3 ¼ 0; e4 ¼ 0:

The remap is done by constructing a piecewise linear function on each original cell for each of the

conserved variables mass momentum and total energy, and then integrating that function over the new

cells. The slope for each of these is taken to be the central divided difference, which of course produces

remapped values well out of bound.

The remapped and repaired densities are shown in Fig. 1. The repaired masses are

m̂1 ¼ 4:6; m̂2 ¼ 5:45; m̂3 ¼ 0:2; m̂4 ¼ 0:25:
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Fig. 1. Density: (a) initial, (b) remapped before repair, (c) after repair.
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In this case the mass matrix is easily found:

The initial total kinetic energy is 5.25. After repair of density but before repair of velocity the total

kinetic energy has increased to 5.68. After velocity repair it is 5.15.

The density remap and repair process is demonstrated in Fig. 1: (a) the initial density, (b) remapped, (c)

repaired. The velocity remap and repair process is demonstrated in Fig. 2: (a) the initial velocity, (b) ve-
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locity computed using the remapped momentum and repaired mass, and then (c) repaired. The internal

energy remap and repair process is demonstrated in Fig. 3: (a) the initial internal energy, (b) computed

using the remapped total energy and the repaired density and the repaired velocity, and then (c) repaired.
8. Application to advection

The advection equation (in two dimensions)

oq
ot

þ u
oq
ox

þ v
oq
oy

¼ 0;

and the conservation equation

oq
ot

þ oqu
ox

þ oqv
oy

¼ 0

are equivalent if the given velocity field is divergence-free. A conservative numerical scheme for the con-

servation equation will conserve mass, but a numerical advection method may not, even if the velocity field

is divergence-free. Also, unphysical values can be generated.

This is a well-known difficulty and many ideas have been proposed to avoid it. A discussion of the general

approaches via flux-corrected transport and nonlinear filters is given in [5] along with some new methods.

Some form of mass redistribution plays an important role in those methods. Repair can be classified as a
mass redistribution nonlinear filter, and, not surprisingly, it is similar to such filters proposed in [5].

The global mass repair algorithms can be applied as a post processor at the end of each time step of an

advection scheme, and they have the potential to enforce mass conservation as well as reduce oscillations.

In Section 2.2 the total mass M was assumed to be the same before and after remapping. If the chosen

advection scheme is not conservative we can still take M to be the mass at the beginning of the time step,

but in this case we cannot be certain that repair will successfully distribute the mass error and impose the

bounds. The discrepancy jdj might be too large or the bounds might be too narrow. So the implementation

has to allow for this, but typically the mass error is small compared to the mass.
We computed the advection by a rigid rotation of a discontinuous nonegative cone, after three rotations

on a 200� 200 grid. In Fig. 4(a) the initial data are shown in side-view and as a reference calculation we
Fig. 4. Discontinuous cone: (a) initial, (b) by CENOAC after three rotations.



Fig. 5. Discontinuous cone after three rotations: (a) central third order, (b) repaired.
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show in Fig. 4(b) the result of a limited version of the third order CENO scheme [3] using artificial

compression (CENOAC), as devised by Tariq Aslam (unpublished). This method is excellent for this

problem, although there is a 2% mass error and a minimum density equal to )6.3� 10�5.

Strictly for illustrative purposes, we have eliminated the flux limiter and removed the upwind bias from
the third-order CENO scheme [3], obtaining a very oscillatory central finite difference method that would

horrify the authors of CENO but one that clearly shows how repair can work. Before repair, Fig. 5(a), there

are negative densities and severe oscillations. After repair, Fig. 5(b) all densities are nonnegative, but some

small oscillations remain. The repair has also clipped some off the peak. The repair used the final global

variant of Section 2.2.

The running time for unlimited repaired CENO was 507 s, while for the limited upwind CENOAC the

running time was 548 s. The central difference scheme, having no limiter steps, took 433 s. One can only say

that in this case the computational expense of repair is reasonable.
9. Comments

The hypothesis of Theorem 2 is satisfied if the new masses are obtained by exact integration of a

nonnegative density, but that is not readily checked in general. As for Theorem 3, even for this exact in-

tegration we do not know if kinetic energy always decreases. There is an alternative procedure that does

decrease total kinetic energy, namely, if the new velocity is not defined by remapping momentum but by
averaging over the submasses of the nonnegative mass matrix, that is, if

u0i ¼
P

j mijujP
j mij

;

for then, by the Cauchy–Schwarz inequality

X
i

m0
iðu0iÞ

2 ¼
X
i

ð
P
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¼
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i
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j
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Finally, some words of caution about repair as applied to remapping. One method of solving the Euler

equations that is popular in certain circles is to start with an orthogonal grid, do a time step with a La-

grangian method, and then remap back to the orthogonal grid. The local repair algorithm gives different
results for different ordering of the sweep through the cells, and as a result a solution that should be in-

dependent of one of the coordinate variables will get distorted. Repair by global redistribution avoids this,

but there remains the issue of the effect of repair on the dynamics of the Euler equations. Some compu-

tations of Riemann problems by Raphael Loubere indicate that local repair is ‘‘safe’’, but repair by global

redistribution is not. This requires further research into ways of keeping locality and 1D symmetry. It is our

feeling that for advection, it being a linear problem, and based on the admittedly few examples we have

done, repair by global redistribution is a valid process for enforcing bounds and conservation on advection

codes, and could be considered as an alternative to various existing that attempt to achieve that goal, as
shown above, even as sophisticated a method as CENOAC still produces negative values upon advecting a

nonnegative distribution.
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